License and Credits

Table of Contents

License

This documentation is licensed under the terms of the GNU Free Documentation License.

This program is licensed under the terms of the GNU General Public License as published by the Free Software Foundation. You have the right to use and copy it, study, modify and then redistribute the revised source code as long as you keep the source code free for the others. For a complete list of your rights and obligations by using this program please read the GPL.

Credits

Many thanks to:

  • Filipe Clemente (bug reporting and useful comments)
  • Caitlin Matos (Debian packaging for 1.x series)
  • Serafeim Zanikolas (Debian packaging up to 0.90)
  • Vaggelis Motesnitsalis (SRS Documentation)
  • Tom Tryfonidis (Arch packaging)
  • Markos Chandras (Gentoo packaging)
  • Daniel Pinto dos Santos, for the now obsolete German translation
  • Andre Somers, for bug fixing and useful comments
  • Thomas Ingold, for betweenness bug reporting
  • Steven Orr, for bug reporting
  • Fred March, for bug reporting
  • Alejandro Garrido Mota (Debian packaging)
  • Martin Hohenberg
  • Victor Cardoso
  • Paul Johnson

References

  • Anthonisse, .I. M.(1971). The Rush in a Graph. Amsterdam: Mathematisch Centrum
  • Brandes, U. (2001). A Faster Algorithm for Betweenness Centrality. Journal of Mathematical Sociology 25(2), pp.163-177.
  • Brandes, U. (2001). Drawing on Physical Analogies. In M. Kaufmann and D. Wagner (Eds.): Drawing Graphs: Methods and Models. LNCS Tutorial 2025, pp. 71-86.
  • Bonacich, P. 1972. "Factoring and Weighting Approaches to Status Scores and Clique Identification." Journal of Mathematical Sociology 2:113-120.
  • Brin, S. and Page, L. (1998). The Anatomy of a Large-Scale Hypertextual Web Search Engine. In: Seventh International World-Wide Web Conference (WWW 1998), April 14-18, 1998, Brisbane, Australia.
  • Bron, C. and Kerbosch J. 1973. Algorithm 457: finding all cliques of an undirected graph. Commun. ACM 16, 9 (September 1973), 575-577. ACM Press: New York, USA
  • Dasgupta S., Papadimitriou C.H. & Vazirani U.V. (2006). Algorithms.
  • Davis, J. A. & Leinhardt S. (1972). The Structure of Positive Relations in Small Groups.In J. Berger (Ed.), Sociological Theories in Progress , vol. 2. pp. 218-51. Boston, MA: Houghton Mifflin.
  • Doyle, J. K. & Graver J. E. (1977). Mean distance in a graph. In Discrete Mathematics, Volume 17, Issue 2, 1977, Pages 147-154
  • Eades, P, (1984). A Heuristic for Graph Drawing. Congressus Numerantuum, 42:149-160.
  • Erdos, P. and Renyi, A. (1959). On Random Graphs. I. Publicationes Mathematicae 6: 290-297.
  • Erdos, P. and Renyi, A. (1960). The Evolution of Random Graphs. Magyar Tud. Akad. Mat. Kutat Int. Kol. 5: 17-61.
  • Freeman L. C. (1979). Centrality in Social Networks Conceptual Clarification. Social Networks, 1 (1978/79), pp. 215-239
  • Fruchterman, T.M.J. & Reingold, E.M. (1991). Graph Drawing by Force-Directed Placement. Software-Practice & Experience. Vol. 21, Is. 11, pp. 1129-1164.
  • Galaskiewicz, J. (1985). Social Organization of an Urban Grants Economy. New York: Academic Press.
  • Gil, J. & Schmidt, S., (1996a). The origin of the Mexican network of power. International Social Network Conference, Charleston, SC, USA, pp. 22–25
  • Gil, J. & Schmidt, S., (1996b). The political network in Mexico. Social Networks 18, 355–381
  • Holland, P.W. & Leinhardt. S. (1970). A Method for Detecting Structure in Sociometric Data. American Journal of Sociology 70: 492-513.
  • Holland, P.W. & S. Leinhardt. (1971). Transitivity in Structural Models of Small Groups. Comparative Group Studies 2:107-124.
  • Holland, P.W. & S. Leinhardt. (1975). Local Structure in Social Networks. Sociological Methodology<.em> 1976: 1-45.
  • Johnson,S.C. 1967, "Hierarchical Clustering Schemes" Psychometrika, 2:241-254.
  • Kamada T. & Kawai S. (1989). An algorithm for drawing general undirected graphs. Information Processing Letters 31 (1989) 7-15.
  • Knoke D. and Wood J. (1981). Organized for action: Commitment in voluntary associations. New Brunswick, NJ: Rutgers University Press. Knoke D. and Kuklinski J. (1982). Network analysis, Beverly Hills, CA: Sage
  • Krackhardt D. (1987). Cognitive social structures. Social Networks, 9, 104-134.
  • Liu, C.L. (2000). Elements of Discrete Mathematics 2nd Edition. Greek Translation.
  • Newman, M. (2010). Networks: an introduction. Oxford university press.
  • Page L., Brin S., Motwani R., Winograd T. (1998). The PageRank Citation Ranking: Bringing Order to the Web. Stanford University. Technical Report.
  • Press W., Teukolsky S., Vetterling W. & Flannery B. (1992). Numerical Recipes in C, the art of scientific computing.
  • Sabidussi, G. (1966). The centrality index of a graph. Psychometrika 31, pp 581–603.
  • Schank, T & Wagner. D (2005). Approximating Clustering Coefficient and Transitivity. J. Graph Algorithms Appl. 9(2): 265-275
  • Stephenson K. & Zelen M. (1989). Rethinking Centrality: Methods and examples. Social Networks 11 1-37.
  • Stroustrup B. (1997). The C++ Programming Language.
  • Scott, J. (2000). Social Network Analysis, A handbook.
  • Qt Project (2014). Qt5: A cross-platform application and UI framework for developers using C++ or QML. https://qt-project.org
  • Wasserman S., Faust K. (2000). Social Network Analysis. Methods and Applications.
  • Watts, D.J., Strogatz, S.H. (1998). Collective dynamics of ''small-world'' networks. Nature 393 (6684): 409–10.
  • Zachary W. (1977). An information flow model for conflict and fission in small groups. Journal of Anthropological Research, 33, 452-473.

Citation

If you use SocNetv in your papers, please cite us as follows:

Kalamaras D. Social Network Visualizer (SocNetV). Social network analysis and visualization software. Home page: http://socnetv.org

For citing the SocNetv Manual, please use:

Kalamaras D. (2015) The SocNetV Manual. Social Network Visualizer (SocNetV). http://socnetv.org