Code Documentation 3.1
Social Network Visualizer
Loading...
Searching...
No Matches
Matrix Class Reference

#include <matrix.h>

Collaboration diagram for Matrix:

Public Member Functions

 Matrix (int rowDim=0, int colDim=0)
 Matrix::Matrix Default constructor - creates a Matrix of given dimension (0x0) Use resize(m,n) or zeromatrix(m,n) to resize it.
 
 Matrix (const Matrix &b)
 Matrix::Matrix Copy constructor. Creates a Matrix identical to Matrix b Allows Matrix a=b declaration Every MatrixRow object holds max_int=32762.
 
 ~Matrix ()
 Matrix::~Matrix Destructor.
 
void clear ()
 Clears data.
 
void resize (const int m, const int n)
 Resizes this matrix to m x n Called before every operation on new matrices. Every MatrixRow object holds max_int=32762.
 
qreal item (int r, int c)
 Returns the (r,c) matrix element.
 
void setItem (const int r, const int c, const qreal elem)
 Sets the (r,c) matrix element calling the setColumn method.
 
qreal operator() (const int r, const int c)
 
MatrixRowoperator[] (const int &r)
 
void clearItem (int r, int c)
 Clears the (r,c) matrix element.
 
int cols ()
 
int rows ()
 
int size ()
 
void findMinMaxValues (qreal &min, qreal &max, bool &hasRealNumbers)
 finds Min-Max values in current Matrix
 
void NeighboursNearestFarthest (qreal &min, qreal &max, int &imin, int &jmin, int &imax, int &jmax)
 Like Matrix::findMinMaxValues only it skips r==c.
 
void deleteRowColumn (int i)
 Deletes row and column and shifts rows and cols accordingly.
 
void identityMatrix (int dim)
 Makes this square matrix the identity square matrix I.
 
void zeroMatrix (const int m, const int n)
 Makes this matrix the zero matrix of size mxn.
 
void fillMatrix (qreal value)
 Fills a matrix with a given value.
 
MatrixsubtractFromI ()
 Subtracts this matrix from I and returns.
 
Matrixoperator= (Matrix &a)
 Matrix equality/assignment , operator = Allows copying a matrix onto another using b=a where b,a matrices Equals two matrices.
 
void sum (Matrix &a, Matrix &b)
 Matrix addition Takes two (nxn) matrices and returns their sum as a reference to this Same algorithm as operator +, just different interface. In this case, you use something like: c.sum(a,b)
 
void operator+= (Matrix &b)
 Matrix::operator += Matrix add another matrix: += Adds to this matrix another matrix B of the same dim and returns to this Allows A+=B.
 
Matrixoperator+ (Matrix &b)
 Matrix addition, operator + Adds this matrix and B of the same dim and returns the sum S Allows S = A+B.
 
Matrixoperator- (Matrix &b)
 Matrix subtraction, operator - Subtract this matrix - B of the same dim and returns the result S Allows S = A-B.
 
Matrixoperator* (Matrix &b)
 Matrix multiplication, operator * Multiplies (right) this matrix with given matrix b. Allows P = A * B where A,B of same dimension and returns product as a reference to the calling object.
 
void operator*= (Matrix &b)
 Multiplies (right) this m x n matrix with given n x p matrix b and returns the product in the calling matrix which becomes an m x p matrix. This convenience operator *= allows A *= B.
 
void product (Matrix &A, Matrix &B, bool symmetry=false)
 Matrix Multiplication. Given two matrices A (mxn) and B (nxp) computes their product and stores it to the calling matrix which becomes an m x p matrix Allows P.product(A, B)
 
MatrixproductSym (Matrix &a, Matrix &b)
 Takes two ( N x N ) matrices (symmetric) and outputs an upper triangular matrix.
 
void swapRows (int rowA, int rowB)
 Swaps row A with row B of this matrix.
 
void multiplyScalar (const qreal &f)
 Scalar Multiplication. Multiplies this by qreal f and returns the product matrix of the same dim Allows to use P.multiplyScalar(f)
 
void multiplyRow (int row, qreal value)
 Multiply every element of row by value.
 
void productByVector (qreal in[], qreal out[], const bool &leftMultiply=false)
 Calculates the matrix-by-vector product Ax of this matrix Default product: Ax if leftMultiply=true then it returns the left product xA.
 
Matrixpow (int n, bool symmetry=false)
 Returns the n-nth power of this matrix.
 
MatrixexpBySquaring2 (Matrix &Y, Matrix &X, int n, bool symmetry=false)
 Recursive algorithm implementing "Exponentiation by squaring". Also known as Fast Modulo Multiplication, this algorithm allows fast computation of a large power n of square matrix X.
 
qreal distanceManhattan (qreal x[], qreal y[], int n)
 Helper function, takes to vectors and returns their Manhattan distance (also known as l1 norm, Taxicab or L1 distance) which is the sum of the absolute differences of their coordinates.
 
qreal distanceEuclidean (qreal x[], int n)
 Helper function, computes the Euclideian length (also known as L2 distance) of a vector: if x = (x1 x2 ... xn), then ||x|| = square_root(x1*x1 + x2*x2 + ... + xn*xn)
 
void powerIteration (qreal x[], qreal &xsum, qreal &xmax, int &xmaxi, qreal &xmin, int &xmini, const qreal eps, const int &maxIter)
 Implementation of the Power method which computes the leading eigenvector x of this matrix, that is the eigenvector corresponding to the largest positive eigenvalue. In the process, it also computes min and max values. Used by Eigenvector Centrality (EVC). We use C arrays instead of std::vectors or anything else, as we know from start the size (n) of vectors x and tmp This approach is faster than using std::vector when n > 1000.
 
MatrixdegreeMatrix ()
 Returns the Degree Matrix of this matrix. The Degree Matrix is diagonal matrix which contains information about the degree of each graph vertex (row of the adjacency matrix) Allows S = A.degreeMatrix()
 
MatrixlaplacianMatrix ()
 Returns the Laplacian of this matrix. The Laplacian is a NxN matrix L = D - A where D is the degree matrix of A Allows S = A.laplacianMatrix()
 
Matrixtranspose ()
 Returns the Transpose of this matrix Allows T = A.transpose()
 
MatrixcocitationMatrix ()
 Returns the Cocitation Matrix of this matrix (C = A * A^T) Allows T = A.cocitationMatrix()
 
MatrixinverseByGaussJordanElimination (Matrix &a)
 Inverts given matrix A by Gauss Jordan elimination Input: matrix A Output: matrix A becomes unit matrix this becomes the invert of A and is returned back.
 
Matrixinverse (Matrix &a)
 Computes and returns the inverse of given matrix a Allows b.inverse(a)
 
bool solve (qreal b[])
 Computes and returns the solution of the set of n linear equations A·x = b Allows A.solve(b)
 
bool ludcmp (Matrix &a, const int &n, int indx[], qreal &d)
 Given matrix a, it replaces a by the LU decomposition of a rowwise permutation of itself. Used in combination with lubksb to solve linear equations or invert a matrix.
 
void lubksb (Matrix &a, const int &n, int indx[], qreal b[])
 Solves the set of n linear equations A·X = b, where A nxn matrix decomposed as L·U (L lower triangular and U upper triangular) by forward substitution and backsubstitution.
 
MatrixdistancesMatrix (const int &metric, const QString varLocation, const bool &diagonal, const bool &considerWeights)
 Computes the dissimilarities matrix of the variables (rows, columns, both) of this matrix using the user defined metric.
 
MatrixsimilarityMatrix (Matrix &AM, const int &measure, const QString varLocation="Rows", const bool &diagonal=false, const bool &considerWeights=true)
 Computes the pair-wise matching score of the rows, columns or both of the given matrix AM, based on the given matching measure and returns the similarity matrix.
 
MatrixpearsonCorrelationCoefficients (Matrix &AM, const QString &varLocation="Rows", const bool &diagonal=false)
 Computes the Pearson Correlation Coefficient of the rows or the columns of the given matrix AM.
 
bool printHTMLTable (QTextStream &os, const bool markDiag=false, const bool &plain=false, const bool &printInfinity=true)
 Prints this matrix as HTML table This has the problem that the real actorNumber != elementLabel i.e. when we have deleted a node/vertex.
 
bool printMatrixConsole (bool debug=true)
 Prints this matrix to stderr or stdout.
 
bool illDefined ()
 Checks if matrix is ill-defined (contains at least an inf element)
 

Private Attributes

MatrixRowrow
 
int m_rows
 
int m_cols
 

Friends

QTextStream & operator<< (QTextStream &os, Matrix &m)
 Prints matrix m to given textstream.
 

Constructor & Destructor Documentation

◆ Matrix() [1/2]

Matrix::Matrix ( int  rowDim = 0,
int  colDim = 0 
)

Matrix::Matrix Default constructor - creates a Matrix of given dimension (0x0) Use resize(m,n) or zeromatrix(m,n) to resize it.

default constructor - default rows = cols = 0

Parameters
Actors

◆ Matrix() [2/2]

Matrix::Matrix ( const Matrix b)

Matrix::Matrix Copy constructor. Creates a Matrix identical to Matrix b Allows Matrix a=b declaration Every MatrixRow object holds max_int=32762.

Parameters
b

◆ ~Matrix()

Matrix::~Matrix ( )

Matrix::~Matrix Destructor.

Member Function Documentation

◆ clear()

void Matrix::clear ( )

Clears data.

◆ clearItem()

void Matrix::clearItem ( int  r,
int  c 
)

Clears the (r,c) matrix element.

Parameters
r
c

◆ cocitationMatrix()

Matrix & Matrix::cocitationMatrix ( )

Returns the Cocitation Matrix of this matrix (C = A * A^T) Allows T = A.cocitationMatrix()

Parameters
b
Returns
Matrix T

◆ cols()

int Matrix::cols ( )
inline

◆ degreeMatrix()

Matrix & Matrix::degreeMatrix ( )

Returns the Degree Matrix of this matrix. The Degree Matrix is diagonal matrix which contains information about the degree of each graph vertex (row of the adjacency matrix) Allows S = A.degreeMatrix()

Parameters
b
Returns
Matrix S

◆ deleteRowColumn()

void Matrix::deleteRowColumn ( int  erased)

Deletes row and column and shifts rows and cols accordingly.

Parameters
erasedrow/col to delete

◆ distanceEuclidean()

qreal Matrix::distanceEuclidean ( qreal  x[],
int  n 
)

Helper function, computes the Euclideian length (also known as L2 distance) of a vector: if x = (x1 x2 ... xn), then ||x|| = square_root(x1*x1 + x2*x2 + ... + xn*xn)

Parameters
x
n
Returns

◆ distanceManhattan()

qreal Matrix::distanceManhattan ( qreal  x[],
qreal  y[],
int  n 
)

Helper function, takes to vectors and returns their Manhattan distance (also known as l1 norm, Taxicab or L1 distance) which is the sum of the absolute differences of their coordinates.

Parameters
x
y
Returns

◆ distancesMatrix()

Matrix & Matrix::distancesMatrix ( const int &  metric,
const QString  varLocation,
const bool &  diagonal,
const bool &  considerWeights 
)

Computes the dissimilarities matrix of the variables (rows, columns, both) of this matrix using the user defined metric.

Parameters
metric
varLocation
diagonal
considerWeights
Returns

◆ expBySquaring2()

Matrix & Matrix::expBySquaring2 ( Matrix Y,
Matrix X,
int  n,
bool  symmetry = false 
)

Recursive algorithm implementing "Exponentiation by squaring". Also known as Fast Modulo Multiplication, this algorithm allows fast computation of a large power n of square matrix X.

Parameters
Ymust be the Identity matrix on first call
Xthe matrix to be powered
nthe power
symmetry
Returns
Matrix&

On first call, parameters must be: Y=I, X the orginal matrix to power and n the power. Returns the power of matrix X to this object. For n > 4 it is more efficient than naively multiplying the base with itself repeatedly.

◆ fillMatrix()

void Matrix::fillMatrix ( qreal  value)

Fills a matrix with a given value.

Parameters
value

◆ findMinMaxValues()

void Matrix::findMinMaxValues ( qreal &  min,
qreal &  max,
bool &  hasRealNumbers 
)

finds Min-Max values in current Matrix

Parameters
minvalue in the matrix
maxvalue Complexity: O(n^2)

◆ identityMatrix()

void Matrix::identityMatrix ( int  dim)

Makes this square matrix the identity square matrix I.

Parameters
dim

◆ illDefined()

bool Matrix::illDefined ( )

Checks if matrix is ill-defined (contains at least an inf element)

Returns

◆ inverse()

Matrix & Matrix::inverse ( Matrix a)

Computes and returns the inverse of given matrix a Allows b.inverse(a)

Parameters
a
Returns

◆ inverseByGaussJordanElimination()

Matrix & Matrix::inverseByGaussJordanElimination ( Matrix A)

Inverts given matrix A by Gauss Jordan elimination Input: matrix A Output: matrix A becomes unit matrix this becomes the invert of A and is returned back.

Parameters
A
Returns
inverse matrix of A

◆ item()

qreal Matrix::item ( int  r,
int  c 
)

Returns the (r,c) matrix element.

Parameters
r
c
Returns

◆ laplacianMatrix()

Matrix & Matrix::laplacianMatrix ( )

Returns the Laplacian of this matrix. The Laplacian is a NxN matrix L = D - A where D is the degree matrix of A Allows S = A.laplacianMatrix()

Parameters
b
Returns
Matrix S

◆ lubksb()

void Matrix::lubksb ( Matrix a,
const int &  n,
int  indx[],
qreal  b[] 
)

Solves the set of n linear equations A·X = b, where A nxn matrix decomposed as L·U (L lower triangular and U upper triangular) by forward substitution and backsubstitution.

Given A = L·U we have A · x = (L · U) · x = L · (U · x) = b So, this routine first solves L · y = b for the vector y by forward substitution and then solves U · x = y for the vector x using backsubstitution

Parameters
ainput matrix a as the LU decomposition of A, returned by the routine ludcmp
ninput size of matrix
indxinput vector, records the row permutation, returned by the routine ludcmp
binput array as the right-hand side vector B, and output with the solution vector X
Returns
:

a, n, and indx are not modified by this routine and can be left in place for successive calls with different right-hand sides b. This routine takes into account the possibility that b will begin with many zero elements, so it is efficient for use in matrix inversion.

Code adapted from Knuth's Numerical Recipes in C, pp 47

◆ ludcmp()

bool Matrix::ludcmp ( Matrix a,
const int &  n,
int  indx[],
qreal &  d 
)

Given matrix a, it replaces a by the LU decomposition of a rowwise permutation of itself. Used in combination with lubksb to solve linear equations or invert a matrix.

Parameters
ainput matrix n x n and output arranged as in Knuth's equation (2.3.14)
ninput size of matrix
indxoutput vector, records the row permutation effected by the partial pivoting
doutput as ±1 depending on whether the number of row interchanges was even or odd
Returns
:

Code adapted from Knuth's Numerical Recipes in C, pp 46

◆ multiplyRow()

void Matrix::multiplyRow ( int  row,
qreal  value 
)

Multiply every element of row by value.

Parameters
row
value

◆ multiplyScalar()

void Matrix::multiplyScalar ( const qreal &  f)

Scalar Multiplication. Multiplies this by qreal f and returns the product matrix of the same dim Allows to use P.multiplyScalar(f)

Parameters
f

◆ NeighboursNearestFarthest()

void Matrix::NeighboursNearestFarthest ( qreal &  min,
qreal &  max,
int &  imin,
int &  jmin,
int &  imax,
int &  jmax 
)

Like Matrix::findMinMaxValues only it skips r==c.

Parameters
minvalue. If (r,c) = minimum, it mean that neighbors r and c are the nearest in the matrix/network
maxvalue Complexity: O(n^2)

◆ operator()()

qreal Matrix::operator() ( const int  r,
const int  c 
)
inline

◆ operator*()

Matrix & Matrix::operator* ( Matrix b)

Matrix multiplication, operator * Multiplies (right) this matrix with given matrix b. Allows P = A * B where A,B of same dimension and returns product as a reference to the calling object.

Parameters
b
symmetry
Returns

◆ operator*=()

void Matrix::operator*= ( Matrix b)

Multiplies (right) this m x n matrix with given n x p matrix b and returns the product in the calling matrix which becomes an m x p matrix. This convenience operator *= allows A *= B.

Parameters
b
symmetry
Returns

◆ operator+()

Matrix & Matrix::operator+ ( Matrix b)

Matrix addition, operator + Adds this matrix and B of the same dim and returns the sum S Allows S = A+B.

Parameters
b
Returns
Matrix S

◆ operator+=()

void Matrix::operator+= ( Matrix b)

Matrix::operator += Matrix add another matrix: += Adds to this matrix another matrix B of the same dim and returns to this Allows A+=B.

Parameters
b
Returns
this

◆ operator-()

Matrix & Matrix::operator- ( Matrix b)

Matrix subtraction, operator - Subtract this matrix - B of the same dim and returns the result S Allows S = A-B.

Parameters
b
Returns
Matrix S

◆ operator=()

Matrix & Matrix::operator= ( Matrix a)

Matrix equality/assignment , operator = Allows copying a matrix onto another using b=a where b,a matrices Equals two matrices.

Parameters
a
Returns

◆ operator[]()

MatrixRow & Matrix::operator[] ( const int &  r)
inline

◆ pearsonCorrelationCoefficients()

Matrix & Matrix::pearsonCorrelationCoefficients ( Matrix AM,
const QString &  varLocation = "Rows",
const bool &  diagonal = false 
)

Computes the Pearson Correlation Coefficient of the rows or the columns of the given matrix AM.

Parameters
AMMatrix
Returns
Matrix nxn with PPC values for every pair of rows/columns of AM

◆ pow()

Matrix & Matrix::pow ( int  n,
bool  symmetry = false 
)

Returns the n-nth power of this matrix.

Parameters
n
symmetry
Returns
Matrix

◆ powerIteration()

void Matrix::powerIteration ( qreal  x[],
qreal &  xsum,
qreal &  xmax,
int &  xmaxi,
qreal &  xmin,
int &  xmini,
const qreal  eps,
const int &  maxIter 
)

Implementation of the Power method which computes the leading eigenvector x of this matrix, that is the eigenvector corresponding to the largest positive eigenvalue. In the process, it also computes min and max values. Used by Eigenvector Centrality (EVC). We use C arrays instead of std::vectors or anything else, as we know from start the size (n) of vectors x and tmp This approach is faster than using std::vector when n > 1000.

Parameters
x
xsum
xmax
xmaxi
xmin
xmini
eps
maxIter

◆ printHTMLTable()

bool Matrix::printHTMLTable ( QTextStream &  os,
const bool  markDiag = false,
const bool &  plain = false,
const bool &  printInfinity = true 
)

Prints this matrix as HTML table This has the problem that the real actorNumber != elementLabel i.e. when we have deleted a node/vertex.

Parameters
os
debug
Returns

◆ printMatrixConsole()

bool Matrix::printMatrixConsole ( bool  debug = true)

Prints this matrix to stderr or stdout.

Returns

◆ product()

void Matrix::product ( Matrix A,
Matrix B,
bool  symmetry = false 
)

Matrix Multiplication. Given two matrices A (mxn) and B (nxp) computes their product and stores it to the calling matrix which becomes an m x p matrix Allows P.product(A, B)

Parameters
A
B
symmetry
Returns
i x k matrix

◆ productByVector()

void Matrix::productByVector ( qreal  in[],
qreal  out[],
const bool &  leftMultiply = false 
)

Calculates the matrix-by-vector product Ax of this matrix Default product: Ax if leftMultiply=true then it returns the left product xA.

Parameters
ininput array/vector
outoutput array
leftMultiply

◆ productSym()

Matrix & Matrix::productSym ( Matrix a,
Matrix b 
)

Takes two ( N x N ) matrices (symmetric) and outputs an upper triangular matrix.

Parameters
a
b
Returns

◆ resize()

void Matrix::resize ( const int  m,
const int  n 
)

Resizes this matrix to m x n Called before every operation on new matrices. Every MatrixRow object holds max_int=32762.

Parameters
Actors

◆ rows()

int Matrix::rows ( )
inline

◆ setItem()

void Matrix::setItem ( const int  r,
const int  c,
const qreal  elem 
)

Sets the (r,c) matrix element calling the setColumn method.

Parameters
r
c
elem

◆ similarityMatrix()

Matrix & Matrix::similarityMatrix ( Matrix AM,
const int &  measure,
const QString  varLocation = "Rows",
const bool &  diagonal = false,
const bool &  considerWeights = true 
)

Computes the pair-wise matching score of the rows, columns or both of the given matrix AM, based on the given matching measure and returns the similarity matrix.

Parameters
AMMatrix
Returns
Matrix nxn with matching scores for every pair of rows/columns of AM

◆ size()

int Matrix::size ( )
inline

◆ solve()

bool Matrix::solve ( qreal  b[])

Computes and returns the solution of the set of n linear equations A·x = b Allows A.solve(b)

Parameters
bvector
Returns

◆ subtractFromI()

Matrix & Matrix::subtractFromI ( )

Subtracts this matrix from I and returns.

Returns
I-this to this matrix

◆ sum()

void Matrix::sum ( Matrix a,
Matrix b 
)

Matrix addition Takes two (nxn) matrices and returns their sum as a reference to this Same algorithm as operator +, just different interface. In this case, you use something like: c.sum(a,b)

Parameters
a
b
Returns

◆ swapRows()

void Matrix::swapRows ( int  rowA,
int  rowB 
)

Swaps row A with row B of this matrix.

Parameters
rowA
rowB

◆ transpose()

Matrix & Matrix::transpose ( )

Returns the Transpose of this matrix Allows T = A.transpose()

Parameters
b
Returns
Matrix T

◆ zeroMatrix()

void Matrix::zeroMatrix ( const int  m,
const int  n 
)

Makes this matrix the zero matrix of size mxn.

Parameters
m
n

Friends And Related Symbol Documentation

◆ operator<<

QTextStream & operator<< ( QTextStream &  os,
Matrix m 
)
friend

Prints matrix m to given textstream.

Parameters
os
m
Returns

Field Documentation

◆ m_cols

int Matrix::m_cols
private

◆ m_rows

int Matrix::m_rows
private

◆ row

MatrixRow* Matrix::row
private

The documentation for this class was generated from the following files: